

コンドロイチン硫酸塩の安定同位体比率分析に よる起源動物種判定

Determining the Origin by The Use of Stable Isotope Ratio Analysis of Chondroetin Sulfate

○成谷和政1 下尾克也1 長尾淳二1 大崎幸彦1 Dr. Colin Granier 2
 Dr. Eric Jamin 3 Ing. Freddy Thomas 3
 1 小林製薬株式会社, 2 Eurofins Analytics K.K.,
 3 Eurofins Analytics France

- ・一般食品では、2000年代、産地偽装が大きな問題となったが、 2009年のJAS法改正以降、規制が強化されたため、 偽装問題は年々減少している。
- ・不適切表示は、食品に関連する様々な法規に違反しているだけで なく、場合によっては健康被害を誘発する恐れもあるため、
 防止せねばならず、それを判別する技術が必要となる。

- ・産地偽装の問題を受け、安定同位体比分析による産地の 特定技術が盛んに開発され、報告をされている。
- ・安定同位体比分析が用いられる理由を下記に列挙するが、
 われわれはこの中で、高度に精製された原料にも適応できる点に
 着目をした。
 - ・同位体比は起源の属性を強く反映(種、産地など)
 - ・複雑な組成物に対して、未精製の状態でも有効
 - ・加熱を含めた加工処理後も起源の特性が残存
 - ・完全に精製された原料であっても起源情報が残存

・2013年現在、日本国内の健康食品市場で用いられるコンドロイ チン硫酸塩の大部分は"サメ由来"と表示されている。 しかし、残念なことに"サメ由来"と表示されながら、まれに不正確 であることが判明している。(たとえば、ブタかウシを起源とした コンドロイチン硫酸塩が用いられている場合がある。)

- ・それゆえ、起源の誤表示を予防するために高い信頼性をもつ 動物種の起源判別法が必要であるが、一般的な試験法 (GC/HPLC/IR等)ではコンドロイチン硫酸塩のような精製原料の 起源判別は難しい現状がある。
- ・そこで本研究では、精製原料(コンドロイチン硫酸塩)に対して安定 同位体比分析を用いることでその起源動物種の判別を検討した。

🍊 🛟 [実験方法] サンプル

・サンプルとしては、動物種の起源が多様で、5種の安定同位体情報 (H、C、N、O、S)が得られるコンドロイチン硫酸塩を検討した。

- ・比較基準となる純粋なコンドロイチン硫酸塩は、基原材料について 十分なトレーサービリティーを持つ原料を選択した。
- ・起源種の生息域および生物種の特徴を考察するため、 鮫8種、豚8種、牛5種、イカ1種、鮭1種を起源とした23種の コンドイチン硫酸塩のサンプルを使用した。

Fig1. chemical structure of chondroitine sulfate monomers

Table 1-1: List of samples

CODE	TYPE	ORIGIN	SAMPLE
S1	MARINE	SHARK	Chondroitin Sulfate sodium salt from shark cartilage (SIGMA C4384)
S2	MARINE	SHARK	Chondroitin Sulfate C sodium salt (WAKO 034-08801)
S3	MARINE	SHARK	Chondroitin Sulfate C sodium salt (NAKARAI 08815-84)
S4	MARINE	SHARK	Chondroitin Sulfate sodium salt
S5	MARINE	SHARK	Chondroitin Sulfate sodium salt
S6	MARINE	SHARK	Chondroitin Sulfate sodium salt
S7	MARINE	SHARK	Chondroitin Sulfate sodium salt
S8	MARINE	SHARK	Chondroitin Sulfate sodium salt
SA	MARINE	SALMON	Chondroitin Sulfate sodium salt
SQ	MARINE	SQUID	Chondroitin Sulfate sodium salt

CODE	TYPE	ORIGIN	SAMPLE
P1	LAND	PIG	Chondroitin Sulfate B sodium salt (SIGMA C 3788)
P2	LAND	PIG	Chondroitin Sulfate sodium salt (KANTO CHEMICAL 07756-30)
P3	LAND	PIG	Chondroitin Sulfate sodium salt (KISHIDA CHEMICAL 000-16622)
P4	LAND	PIG	Chondroitin Sulfate sodium salt
P5	LAND	PIG	Chondroitin Sulfate sodium salt
P6	LAND	PIG	Chondroitin Sulfate sodium salt, Pig (ALBAFLOR)
P7	LAND	PIG	Chondroitin Sulfate sodium salt
P8	LAND	PIG	Chondroitin Sulfate sodium salt,
B1	LAND	BOVINE	Chondroitin Sulfate sodium salt from bovine cartilage (SIGMA C6737)
B2	LAND	BOVINE	Chondroitin sulfate A sodium salt from bovine trachea (SIGMA C9819)
B3	LAND	BOVINE	Chondroitin Sulfate, Bovine Trachea, Bovine(-)
B4	LAND	BOVINE	Chondroitin Sulfate sodium salt,
B5	LAND	BOVINE	Chondroitin Sulfate Sodium salt, Bovine (PFANNENSCHMIDT)

Table 1-2: List of samples

- Chondroitin sulfates were finely ground and homogenised in the laboratory. Samples were stored in a dessicator before isotopic measurement. The isotopic parameters were measured using on Isotopic Ratio Mass Spectrometers (IRMS) connected online with elemental analysers (EA).
- Hydrogen isotope ratios were measured with a Eurovector EuroPyrOH, coupled to an Isoprime mass spectrometer equipped for hydrogen analysis, both from Micromass (Manchester, U.K.).
- Carbon and nitrogen isotope ratios were measured by continuous helium flow EAisotope ratio mass spectrometry (CF-EA-IRMS) using a FlashEA-1112 elemental analyzer, fitted to an isotope ratio mass spectrometer (Delta V Advantage), both from Thermo Fisher Scientific (Bremen, Germany).
- Oxygen isotope ratios were measured by CF-EA-pyrolysis-IRMS (CF-EA-P-IRMS) using a Carlo Erba NA1500 (Milan, Italy) coupled to an Optima mass spectrometer, both from Micromass (Manchester, U.K.).
- Sulfur ratios were measured with a FlashEA-1112 equipped with special reactor and connections for sulfur, fitted to an isotope ratio mass spectrometer (Delta V Advantage), both from Thermo Fisher Scientific (Bremen, Germany).

・すべての標準ガスは、国際基準で定められた下記の物質を用いた。

Table 2: List of reference gas

対象元素	標準物質	試薬
水素	標準平均海水(VSMOW)	NBS-22、IAEA-CH-7
炭素	矢石化石(VPDB)	NBS-22、IAEA-CH-6
酸素	標準平均海水(VSMOW)	IAEA-601
窒素	大気	IAEA-N-1、IAEAN-2
硫黄	隕鉄中のFeS(VCDT)	IAEA-S-1、IAEA-S-2

🥢 🔅 [実験方法] 安定同位体比分析

・実験結果は国際基準物質と比較し、下記のδ‰で示した。

 $δX (‰) = (R_{#ν J N} / R_{#} -1) × 1000$ $X = {}^{13}C, {}^{15}N, {}^{18}O, D, {}^{34}S$ $R = {}^{13}C/{}^{12}C, {}^{15}N/{}^{14}N, {}^{18}O/{}^{16}O, D / {}^{1}H, {}^{34}S/{}^{32}S$

・技術的な不確かさについては、下記の通り検討した。

(1% = 0.1%)

Table 3: List of uncertainties

対象元素	不確かさ
水素	3‰
炭素	0.3‰
酸素	0.5‰
窒素	0.5‰
硫黄	0.5‰

•一変量の結果は、海洋生物と陸上生物の結果をそれぞれ 箱ひげ図(Figure 2)で下記の通り示す。

炭素の分布は陸上生物で大きな範囲を有することが分かった。

Figure 2-3: Box and whiskers plots of the isotopic deviations of nitrogen(d15N) in marine and land origins respectively.

窒素についても、水素と同様に海洋生物の方が 安定同位体比が大きい傾向が見られた。

Figure 2-4: Box and whiskers plots of the isotopic deviations of oxygen (d180) in marine and land origins respectively.

酸素についても、水素と同様に海洋生物の方が 安定同位体比が大きい傾向が見られた。

Figure 2-5: Box and whiskers plots of the isotopic deviations of sulfur (d34S) in marine and land origins respectively.

硫黄についても、海洋生物の方が安定同位体比が大きい傾向が見られた。

2グループに区別できる可能性が示唆された。

15

🥠 🔅 [結果・考察] 主成分分析

・起源種の判別を最適化するため、5つの安定同位体の変数を組み 合わせたデータを多変量解析によって評価した。 評価については主成分分析 (PCA) で実施し、2つの主成分 (PC) が変量80%以上のときの結果を示す。

・単変量解析で予測した通り、主成分1(PC1)は、大きな差が見られた³⁴S、¹⁸OおよびDの影響を受け、¹⁵Nから軽微な寄与を受けた。
 主成分2(PC2)は、主として¹³Cの影響を示した。

Table 4: "Loadings" of the PCA

	PC 1	PC 2	
d²H	<u>-0.857</u>	-0.165	
d ¹³ C	-0.566	<u>0.787</u>	
d ¹⁵ N	-0.796	0.197	
d ¹⁸ O	<u>-0.910</u>	-0.220	
d ³⁴ S	<u>-0.879</u>	-0.296	

Figure 4 : Projection of samples in the plane of the two first Principal Components of the PCA analysis (PC1 and PC2).

Figure 4 : Projection of samples in the plane of the two first Principal Components of the PCA analysis (PC1 and PC2).

18

19

🥠 🔅 [結果・考察] 主成分分析

Site	n	$\delta^{^{13}}$ C, ‰	$\delta^{ m ^{15}}$ N, ‰	$\delta^{^{18}}\mathrm{O}$, ‰
Japan USA Australia New Zealand	66 20 53 3	$\begin{array}{l} -18.5\pm1.0^{\rm a)}\\ -12.3\pm1.1^{\rm b)}\\ -22.5\pm1.0^{\rm c)}\\ -24.1\pm0.1\end{array}$	$7.5 \pm 0.8^{a)} \\ 6.0 \pm 0.9^{b)} \\ 6.6 \pm 0.8^{c)} \\ 6.3 \pm 1.3$	$10.9 \pm 2.1^{a)}$ $10.9 \pm 1.1^{a)}$ $16.0 \pm 1.5^{b)}$ 12.1 ± 0.4

A different suffix character shows significant difference (P < 0.05) by Bonferroni. (mean \pm sd) R. Nakashita et al. *BUNSEKI KAGAKU* 2009, 58, 12, 1023-1028.

中下らの報告では、安定同位体比分析による牛肉の産地判別が 試みられている。

牛の飼料の影響が示唆されており、与えているとうもろこし
 (C4植物)の割合が大きいほど⁵¹³Cが高くなっている傾向を
 見出している。

Figure 4 : Projection of samples in the plane of the two first Principal Components of the PCA analysis (PC1 and PC2).

Figure 4 : Projection of samples in the plane of the two first Principal Components of the PCA analysis (PC1 and PC2).

21

💋 🔅 [結論]

- 既報では由来動物種や由来組織によりコンドロイチン硫酸塩の側鎖構造(A~ E)とその割合が異なることを利用した海生動物由来と陸生動物由来の判別分析を実施していたが、陸生動物間での明確な判別はまだ困難を伴っていた。
 そこで本検討では異なるアプローチとして安定同位体比質量分析を用いた起源動物種の判別を試みた。
- ・コンドロイチン硫酸塩中の安定同位体比(D、¹³C、¹⁵N、¹⁸O、³⁴S)を分析し、主成分分析を実施した結果、起源種の生息域(海洋および陸)のコンドロイチン 硫酸塩の判別分析に対して、安定同位体比分析を活用可能であることの 検証に成功した。
- ・陸生動物間の判別は既報同様困難であったが、起源種の餌の影響が 受けている可能性が示唆され、起源種の有益な情報として活用できる可能性を 見出した。

💋 🛟 [結論]

- ・本検討のアプローチのメリットとして、分析対象の分子構造に限定 されず、精製原料間での"起源動物種の判別分析"ができることが あげられる。
- ・コンドロイチン硫酸塩に限らず、起源動物/起源植物に基づいて
 最終製品の価値が決定される場合があるため、今後も精度がより
 高い起源種の判別方法の開発が求められる。
- ・今回検討した安定同位体比質量分析は、その方法の一つであり、 各企業レベルで実施可能な手段であるので、この有効な手段をさらに活用するべく今後も提案していきたい。